VENTS TT PRO-Serie

Halbradiale Rohrventilatoren mit einer Luftförderleistung von bis zu 2050 m³/h

Einsatzgebiet

VENTS TT und VENTS TT PRO Ventilatoren bieten zahlreiche Funktionen aus dem Bereich der Axialventilatoren sowie hohe Leistungen Radialventilatoren. Geeignet für Lüftungssysteme, die hohen Druck, kraftvollen Luftstrom und geringe Geräuschbelastung erfordern. Kompatibel mit Lüftungsrohren mit Durchmesser 100 bis 315 mm. Die Ventilatoren TT und VENTS TT PRO ermöglichen eine ideale Entlüftung von Feuchträumen, wie z.B. Sanitärbereich oder Badezimmer und sind zudem zur Lüftung von Wohnungen, Häusern, Geschäften und Cafés geeignet.

VENTS TT-Serie

Halbradiale Rohrventilatoren mit einer Luftförderleistung von bis zu 1850 m³/h

Aufbau

Das Ventilatorgehдuse ist aus hochwertigem robustem Kunststoff gefertigt.

Ventilatorengehäuse sind aus hochwertigen und langlebigen Materialien hergestellt. Das Gehäuse der VENTS TT-Serie wird aus ABS-Kunststoff, das Gehäuse von VENTS TT PRO-Serie wird aus schwerentflammbarem Polypropylen hergestellt. Die Zentraleinheit, bestehend aus Motor, Laufrad und Klemmkasten, wird an die Ventilatorstutzen mit Schlauchschellen befestigt.

Dank dieses Aufbaus erfolgt die Wartung der Ventilators einfach und leicht, ohne den Ventilator zu demontieren und auszubauen. Für die Wartung ist die Zentraleinheit schnell und einfach aus dem Gehäuse zu entnehmen. Alle VENTS TT und VENTS TT PRO Modelle können mit einem Nachlaufschalter, variabel einstellbar von 2 bis 30 Minuten, ausgestattet werden.

TT PRO Aufbau-Besonderheiten

Das Gehäuse des Ventilators TT PRO ist aus aus schwer entflammbarem Kunststoff gefertigt. Der Einlassstutzen ist mit einem Luftsammler zur gleichmäßigen Luftansaugung ausgestattet. Dank des konischen Laufrades und des speziell geformten Profils der Laufradschaufeln erhöht sich die Zirkulargeschwindigkeit des Luftstromes, welche auch den höheren Druck und Luftdurchsatz im Vergleich zu konventionellen Axialventilatoren

Der Lufttrichter, das speziell konstruierte Laufrad und die Leitschaufeln am Ausgang des Ventilatorgehäuses verteilen den Luftstrom so, dass die beste Kombination des Volumenstroms und des hohen Drucks bei niedrigem Geräuschpegel erreicht wird.

Erp Parameter

Bezeichnungserl	klärung	
Serie	Anschluss- Durchmesser	Optionen
VENTS TT PRO VENTS TT	100; 125; 150; 160; 200; 250; 315	S - Hochleistungsmotor T - Nachlaufschalter, einstellbar von 2 bis 30 Minuten U - Drehzahlregler mit einem Elektronik-Thermostat und einem im
		Lüftungsrohr eingebauten Temperatursensor. Verfügt über ein Netzkabel mit IEC C14 Stecker. Temperaturgesteuerter Betrieb. Un - Drehzahlregler mit einem Elektronik-Thermostat und einem externen Temperatursensor mit 4 m Kabel. Verfügt über ein Netzkabel mit IEC C14 Stecker. Temperaturgesteuerter Betrieb. U1 - Drehzahlregler mit einem Elektronik-Thermostat und einem im

IEC C14 Stecker. Zeitgesteuerter Betrieb.

Stecker. Zeitgesteuerter Betrieb. R - Netzkabel mit einem IEC C14 Stecker.

Gesamteffizienz	η, (%)
Messkategorie	MC
Effizienzkategorie	EC
Effizienzgrad	N
Drehzahlregelung	VSD
Leistungsaufnahme	(kW)
Strom	(A)
Volumenstrom	(m³/h)
Statischer Druck	(Pa)
Drehzahl pro Minute	(n/min ⁻¹)

SR

P - eingebauter stufenloser Drehzahlregler mit einem Netzkabel und einem IEC

Serie).

C14 Stecker.

Lüftungsrohr eingebauten Temperatursensor. Verfügt über ein Netzkabel mit

U1n - Drehzahlregler mit einem Elektronik-Thermostat und einem externen

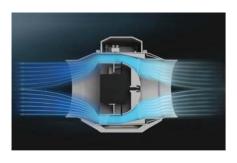
Temperatursensor mit 4 m Kabel. Verfügt über ein Netzkabel mit IEC C14

V - Dreistellungs-Drehzahlschalter (zutreffend nur für Ventilatoren TT PRO-

Zubehör

Seite 478

Seite 378


Seite 386 Seite 388

Seite 392

Seite 446

Seite 477

Spezifisches Verhältnis

Motor

Die Modelle der VENTS TT-Serie verfügen über ein- oder zweistufige Einphasenmotoren. Einige Standardgrößen sind mit einem Hochleistungsmotor erhältlich (VENTS TT...S).

Die Modelle der VENTS TT PRO-Serie verfügen über zweistufige Einphasenmotoren mit niedrigem Energieverbrauch. Die Motoren haben einen thermischen Überlastungsschutz. Die Kugellager sichern eine lange Lebensdauer des Motors und sind für 40 000 Betriebsstunden ausgelegt. Motorschutzart: IP X4.

Drehzahlregelung

Der zweistufige Motor kann über den eingebauten Drehzahlschalter (Option V) oder über den externen Drehzahlschalter P2-1-300 (Sonderzubehör) gesteuert werden. Für die mehrstufigen Motoren wird der externe Drehzahlschalter P2-5,0 (Sonderzubehör) empfohlen.

Stufenlose Drehzahlregelung über den eingebauten Drehzahlregler (Option P) oder über einen externen TRIAC-oder Traforegler (Sonderzubehör). Anschluss an die Klemme der Maximaldrehzahl des Motors.

Drehzahlschalter

Montage

Ventilatoren zum Einbau in Rohrleitung mit entsprechendem Durchmesser an jeglicher Stelle eines Lüftungssystems sowie im beliebigen Winkel. Mehrere Ventilatoren können in einem Lüftungssystem montiert werden:

 parallele Montage zur Erhöhung des Luftvolumenstroms.

 zweistufige Montage zur Erhöhung des Betriebsdrucks.

Das Ventilatorgehäuse ist mit einer flachen Montageplatte zur Montage an der Wand ausgestattet. Der Klemmkasten ist in jeder Position montierbar, für eine einfache Montage und Anschluss.

■ Ventilator mit der elektronischen Steuereinheit für Temperatur- und Drehzahlregelung (Option U)

ldeale Lösung für die Lüftung von temperaturüberwachten Räumen, z.B. Gewächshäusern. Der Ventilator mit einer elektronischen Steuereinheit für Temperatur- und Drehzahlregelung ermöglicht Drehzahlregelung (Volumenstromregelung) je nach der Lufttemperatur im Lüftungsrohr oder im Raum.

Steuergeräte auf der Frontplatte der Steuereinheit:

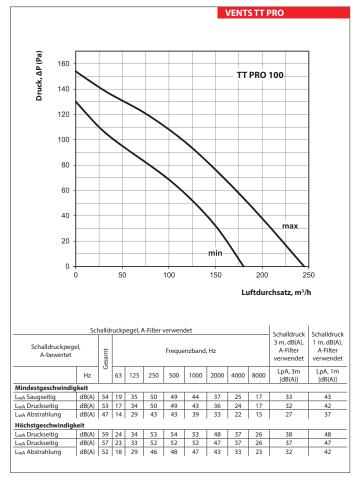
- Drehzahlregler für Drehzahleinstellung;
- Temperaturregler für Einstellung des Temperatursollwertes des Thermostats;
- Thermostat-Betriebsleuchte.

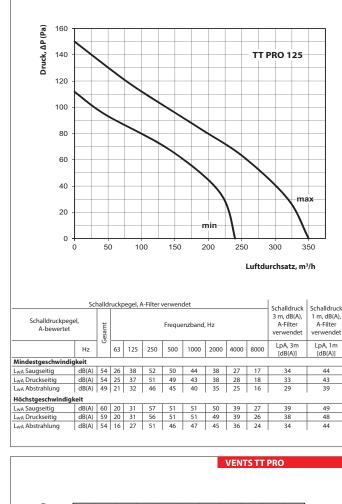
Zwei verfügbare Modifikationen:

- mit einem eingebautem Kanaltemperatursensor (Option U/U1);

– mit einem externen Temperatursensor, welcher an einem 4 m Kabel befestigt ist (Option Un/U1n).

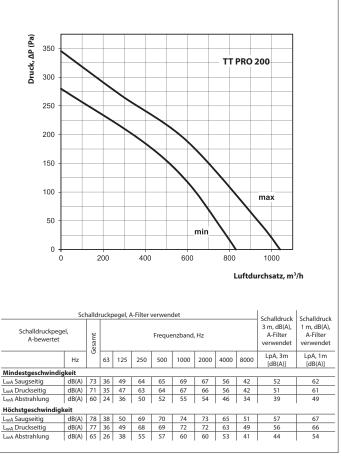
Funktionsweise des Ventilators mit der elektronischen Steuereinheit für Temperatur- und Drehzahlregelung


Stellen sie einen gewünschten Temperatur-Sollwert (Thermostat-Sollwert) mit dem Temperaturregler sowie die Mindestdrehzahl mit dem Drehzahlregler ein. Sobald die Lufttemperatur über den eingestellten Temperatur-Sollwert steigt, schaltet der Ventilator auf die Höchstgeschwindigkeit um. Nach der Temperaturabsenkung unter den Thermostat-Sollwert, schaltet der Ventilator auf die eingestellte, niedrigere Drehzahl um. Zur Verhinderung häufiger Drehzahlumschaltungen, im Fall, dass die Lufttemperatur im Lüftungsrohr zu dem Thermostat-Sollwert identisch ist, wird die Drehzahl-Umschaltverzögerung aktiviert.

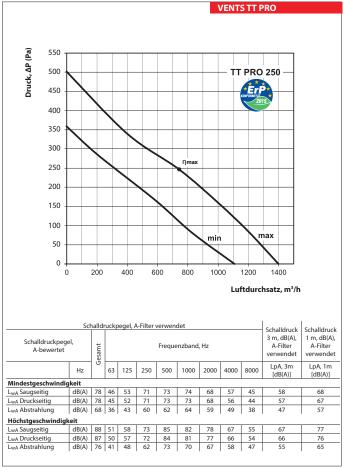

Je nach der Situation, wird eine der zwei Verzögerungsfunktionen angewendet:

- 1. Temperaturgesteuerte Verzögerungsfunktion (Option U): Sofern die Lufttemperatur um 2 °C über den eingestellten Temperatur-Sollwert steigt, schaltet der Ventilator auf die Höchstgeschwindigkeit um. Nach der Temperaturabsenkung unter den Thermostat-Sollwert schaltet der Ventilator auf die eingestellte, niedrigere Drehzahl um. Diese Steuerungsart gewährleistet die Temperaturerhaltung mit der Genauigkeit von 2 °C. Drehzahlumschaltungen werden eingeschränkt.
- 2. Zeitgesteuerte Verzögerungsfunktion (Option U1): Sofern die Lufttemperatur über den eingestellten Temperatur-Sollwert steigt, schaltet der Ventilator auf die Höchstgeschwindigkeit um. Gleichzeitig wird der Verzögerungstimer für 5 Minuten aktiviert. Nach der Temperaturabsenkung unter den Thermostat-Sollwert sowie nach Ablauf der Verzögerungszeit von 5 Minuten schaltet der Ventilator auf die eingestellte, niedrigere Drehzahl um.

Diese Steuerlogik sichert eine präzise Temperaturkontrolle. Im Vergleich zur temperaturgesteuerten Verzögerungslogik (U Option) kommen die Drehzahlumschaltungen häufiger vor, jedoch beträgt die minimale Laufzeit pro Geschwindigkeit 5 Minuten.


VENTILATOREN FÜR RUNDROHRE

VENTS TT PRO


Technische Daten

	TT PRO 100*		TT PRO 125*		TT PRO 150* / TT PRO 160*	
Geschwindigkeit	min.	max.	min.	max.	min.	max.
Netzspannung 50/60 Hz, V	1~ 230		1~ 230		1~ 230	
Leistungsaufnahme, W	23	25	25	29	42	50
Stromaufnahme, A	0,10	0,11	0,11	0,13	0,19	0,22
Förderleistung, m³/h	180	245	240	350	415	565
Drehzahl, min-1	2050	2620	1630	2300	1940	2620
Schalldruck 3 m, dB(A)	27	32	29	34	37	46
Max. Fördermitteltemperatur, °C		60	6	60	6	0
SEV-Klasse	В		В		В	
Schutzart	IF	P X4	IP	X4	IP X4	
				6		

	TT PRO 200*		TT PR	O 250	TT PRO 315	
Geschwindigkeit	min.	max.	min.	max.	min.	max.
Netzspannung 50/60 Hz, V	1~ 230		1~ 230		1~ 230	
Leistungsaufnahme, W	76	108	125	177	230	320
Stromaufnahme, A	0,34	0,48	0,54	0,79	1,0	1,42
Förderleistung, m³/h	830	1040	1110	1400	1570	2050
Drehzahl, min-1	1915	2380	1955	2440	1890	2430
Schalldruck 3 m, dB(A)	45	52	47	55	49	58
Max. Fördermitteltemperatur, °C		60	6	0	(50
SEV-Klasse**		E				-
Schutzart		IP X4	IP	X4	IP	X4

^{*} Entspricht ErP Richtlinien (EC) 327/2011, die Leistungsaufnahme bei der optimalen Effizienz ist weniger als 125 W.

^{**} Die (EC) 1254/2014 ist nicht anzuwenden. Die maximale Luftforderleistung ist >1000 m³/h

 $\eta, (\%) \quad MC \quad EC \quad N \quad VSD \quad (kW) \quad (A) \quad (m^3/h) \quad (Pa) \quad (RPM) \quad SR$

0,171 0,79

Oruck, AP (Pa)						Т	Т		Т			٦
A 650	, 🖊								—т	TPR	0 315	
첫 600) `	\checkmark								150		-
<u>ة</u> 550) 	+	\		+	_	+	-	+	XGWFORMUTAT		_
500	, <u> </u>	\perp	_							201		_
450												
							ηm	200				
400) 						* ''''	dx	\top			
350) 	+	\		+	+	-	$\overline{}$	+			-
300) 	+			+	+	_		-			-
250	, <u> </u>					\perp						
200									1			
							\setminus					
150) 	_			_		_				max	
	- 1			l								
100) 	+			+	-		-	mi	,		-
100 50									miı	n		
50		200	40	00 (600	800	1000	1200			800 2000	
50						800		1200		1600 1 Luftd	urchsatz, Schalldruck	m³/h
50	O O Sci	halldr				verwen				1600 1 Luftd	Schalldruck 3 m, dB(A), A-Filter verwendet	m³/h Schalldruc 1 m, dB(A) A-Filter verwende
5((Schalldruckpeg A-bewertet	Sclel,					verwen	det			1600 1 Luftd	Schalldruck 3 m, dB(A), A-Filter	m³/h Schalldruc 1 m, dB(A) A-Filter
5(Consideration of the second	Sclel,	Gesamt	euckp	egel, <i>F</i>	A-Filter	verwen Freque	det enzband 1000	, Hz	1400	1600 1 Luftd	Schalldruck 3 m, dB(A), A-Filter verwendet LpA, 3m [dB(A)]	m³/h Schalldruc 1 m, dB(A) A-Filter verwende LpA, 1m [dB(A)]
Schalldruckpeg A-bewertet Mindestgeschwindig L _{wA} Saugseitig	Sclel, Hz ykeit dB(A)	desamt Gesamt 08	63 35	125 50	250 69	verwen Freque	det enzband 1000	, Hz	1400	1600 1 Luftd	Schalldruck 3 m, dB(A), A-Filter verwendet LpA, 3m [dB(A)]	m³/h Schalldruc 1 m, dB(A) A-Filter verwende LpA, 1m [dB(A)]
5((Schalldruckpeg	Sclel, Hz	Gesamt	euckp	egel, <i>F</i>	A-Filter	verwen Freque	det enzband 1000	, Hz	1400	1600 1 Luftd	Schalldruck 3 m, dB(A), A-Filter verwendet LpA, 3m [dB(A)]	m³/h Schalldruc 1 m, dB(A) A-Filter verwende LpA, 1m [dB(A)]
Schalldruckpeg A-bewertet Mindestgeschwindis L _{wA} Saugseitig L _{wA} Druckseitig	Hz skeit dB(A) dB(A) dB(A)	halldr Gesamt 80	63 35 34	125 50 49	250 69 68	500 76 75	det enzband 1000 77 75	, Hz 2000 72 71	4000 61 60	8000 847 46	Schalldruck 3 m, dB(A), A-Filter verwendet LpA, 3m [dB(A)]	m³/h Schalldruc 1 m, dB(A) A-Filter verwende LpA, 1m [dB(A)] 70 69
Schalldruckpeg A-bewertet Mindestgeschwindig L _{wA} Saugseitig L _{wA} Druckseitig L _{wA} Abstrahlung	Hz skeit dB(A) dB(A) dB(A)	halldr Gesamt 80	63 35 34	125 50 49	250 69 68	500 76 75	det enzband 1000 77 75	, Hz 2000 72 71	4000 61 60	8000 847 46	Schalldruck 3 m, dB(A), A-Filter verwendet LpA, 3m [dB(A)]	m³/h Schalldruc 1 m, dB(A) A-Filter verwende LpA, 1m [dB(A)] 70 69

 η_{r} (%) MC EC N VSD (kW) (A) (m^3/h) (Pa) (RPM) SR

0,322

1,45

Statisch

50 Nein

34,4

Α

Außenmaße der Ventilatoren

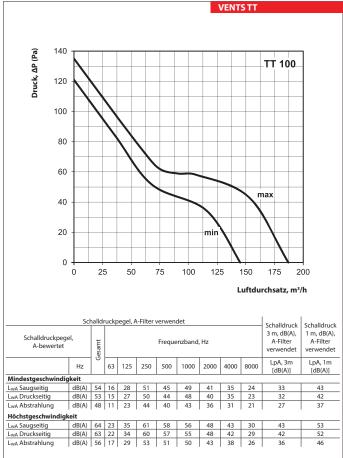

30,6 A Statisch 49,2 Nein

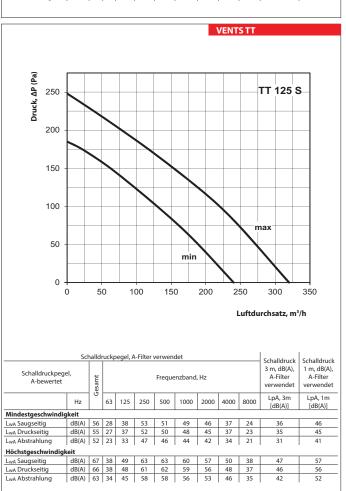
			e, mm		
Modell		Gewicht,			
Wiodeli	ØD	В	Н	L	kg
TT PRO 100	97	195,8	226	302,5	1,75
TT PRO 125	123	195,6	226	258,5	2,15
TT PRO 150	148	220,1	247	289	2,3
TT PRO 160	158	220,1	247	289	3,25
TT PRO 200	199	239	261	295,5	3,95
TT PRO 250	247	287	323	383	7,8
TT PRO 315	310	362	408	445	11,95

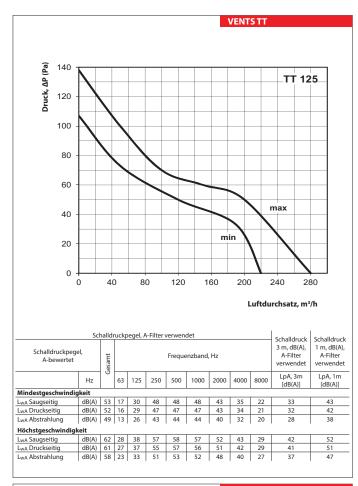
742

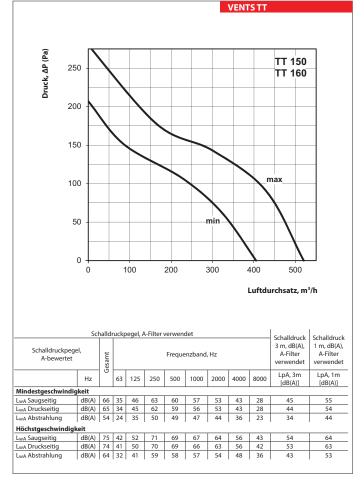
247

2465

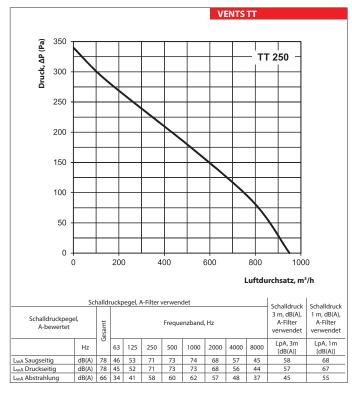

996

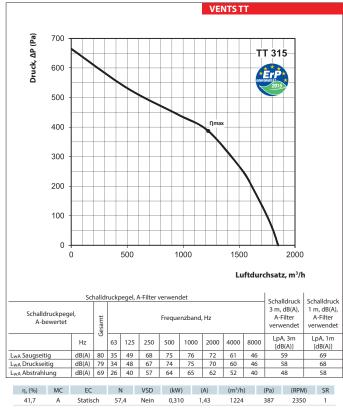

392


2380


VENTS TT PRO

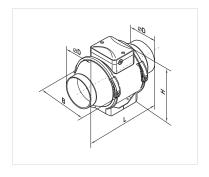
VENTILATOREN FÜR RUNDROHRE


Technische Daten


	TT 100*		TT 1	TT 125 *		5 S*
Geschwindigkeit	min.	max.	min.	max.	min.	max.
Netzspannung 50/60 Hz, V	1~ 230		1~ 230		1~ 230	
Leistungsaufnahme, W	21	33	23	37	28	54
Stromaufnahme, A	0,11	0,21	0,18	0,27	0,12	0,16
Förderleistung, m³/h	145	187	220	280	240	320
Drehzahl, min-1	2180	2385	1950	2455	1850	2510
Schalldruck 3 m, dB(A)	27	36	28	37	31	42
Max. Fördermitteltemperatur, °C	60		60		60	
SEV-Klasse	C		В		C	
Schutzart	IP X4		IP	X4	IP X4	

	TT 150) / TT 160*	TT 250*	TT 315
Geschwindigkeit	min.	max.	-	_
Netzspannung 50/60 Hz, V	1	~ 230	1~ 230	1~ 230
Leistungsaufnahme, W	30	60	120	314
Stromaufnahme, A	0,17	0,27	0,52	1,42
Förderleistung, m ³ /h	405	520	950	1850
Drehzahl, min ⁻¹	1680	2460	1840	2335
Schalldruck 3 m, dB(A)	33	44	45	48
Max. Fördermitteltemperatur, ^o C		60	60	60
SEV-Klasse**		В	В	-
Schutzart	1	P X4	IP X4	IP X4

^{*} Entspricht ErP Richtlinien (EC) 327/2011, die Leistungsaufnahme bei der optimalen Effizienz ist weniger als 125 W.


 $^{^{**}}$ Die (EC) 1254/2014 ist nicht anzuwenden. Die maximale Luftforderleistung ist >1000 m³/h

Außenmaße der Ventilatoren

AAI . II		C. Mala			
Modell	ØD	В	Н	L	Gewicht, kg
TT 100	96	167	190	246	1,4
TT 125	123	167	190	246	1,4
TT 125 S	123	223	250	295	3,0
TT 150	146	223	250	295	3,0
TT 160	158	233	250	295	3,0
TT 250	247	287	323	383	8,3
TT 315	310	362	408	445	11,4

